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ABSTRACT The interest of manufacturing companies in a sufficient prediction of lead times is continuously 
increasing - especially in engineer to order environments with typically a large number of individual parts 
and complex production processes. A multitude of approaches have been proposed in the literature for 
predicting lead times considering different data and methods or algorithms from operations research (OR) 
and machine learning (ML). In order to provide guidance at setting up prediction models and developing new 
approaches, a systematic review of the available approaches for predicting lead times is presented in this 
paper. Forty-two publications were analyzed and synthetized: Based on a developed framework considering 
the used data class (e.g. product data or system status), the data origin (master data or real data) and the used 
method and algorithm from OR and ML, the publications are classified. Based on the classification, a 
descriptive analysis is performed to identify common approaches in the existing literature as well as 
implications for further research. One result is, that mostly order data and the status of the production system 
are used for predicting lead times whereas material data are used seldom. Additionally, ML approaches 
primarily use artificial neural networks and regression models for predicting lead times, while OR approaches 
use mainly combinatorial optimization or heuristics. Furthermore, with increasing model complexity the use 
of real data decreased. Thus, we identified as an implication for further research to set up a complex data 
model considering material data, which uses real data as data origin. 

INDEX TERMS Lead time reduction, Machine learning, Operations research, Prediction methods  

I. INTRODUCTION 
Production companies are in a constant state of change. They 
are challenged to assert themselves in international markets. 
Growing demands for individualized products with increasing 
quality and decreasing prices bring logistics performance, 
such as high adherence to deadlines or short delivery and lead 
times, to the fore as a competitive factor [1][2, p. 2]. As a 
result, lead time is one of the key factors for meeting customer 
requirements [3]. By means of a valid prediction of the lead 
times, delivery dates can be determined at an early stage and 
deviations from schedule can be identified [4]. In contrast, an 
imprecise prediction of lead times can lead to delivery dates 
not being met, resulting in loss of customer confidence and 
consequential costs for late deliveries [5, p. 1]. Particularly 
relevant is the prediction of lead times for mechanical and 
plant engineering, a typical example of an engineer to order 
process. In addition to production and assembly, here the lead 
time includes all upstream processes such as design, order 

planning or the purchasing process for raw materials and 
finished parts [6, pp. 139-140]. Furthermore, the products of a 
machine and plant manufacturer often consist of a large 
number of components that are designed individually to 
achieve a tailor-made solution for the respective customer 
[7][8]. Consequently, the product characteristics defined in the 
design process represent a unique selling point for the 
companies. 

A primary cause of not meeting due dates and extended lead 
times are the negative effects of disruptions [9][10]. The 
occurring disruptions are manifold and include, for example, 
machine breakdowns, missing material, lack of personnel or 
insufficient employee qualification [11][12]. However, a 
recent study found that the majority of disruptions in the 
assembly process occur repeatedly and are theoretically 
predictable [13]. If the occurrence of a disruption is known or 
predictable, this information should also be considered to 
predict lead times. Consequently, data containing that 
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information about disruption and thus the causes of delays 
should be used for the prediction of lead times. The number of 
potential data classes, however, varies due to the large number 
of possible disturbances. In addition to the considered data , 
the methods and algorithms used for the prediction are 
relevant for the quality of the prediction [14][15, p. 3]. For the 
prediction of lead times, methods and algorithms from the 
field of operations research (OR) such as heuristics or 
combinatorics and from the field of machine learning (ML) 
such as neural networks or random forest can be applied [16–
19]. Consequently, the question arises which data should be 
considered in the context of the forecast and which method or 
algorithm can be utilized. Due to the multitude of possibilities, 
the choice is not easy. A systematic review can help to achieve 
an overview of the existing methods and thus facilitate the 
selection for the user.  

In their often cited survey CHENG AND GUPTA [20] 
investigated relationships between due dates, dispatching rules 
and completion times in static and dynamic job shops. 
ÖZTÜRK, KAYALIGIL ET AL. [21] comprehensively 
summarized the development of prediction models with a 
focus on dispatching rules and scheduling. LINGITZ, GALLINA 
ET AL. [22] focused on approaches with regression models to 
predict lead times. KARAOGLAN UND KARADEMIR [23] 
provided a comprehensive overview of the mathematical 
approaches used in the field of machine learning as well as the 
data classes considered. In all publications, however, only 
parts of the current state of the art are considered. In addition, 
it is not always possible to identify whether a systematic 
procedure was used to review the literature. Even after a 
comprehensive search, no review was found that 
systematically summarized both the state of the art of the 
methods and algorithms used and the data considered. 

The aim of this paper is therefore to conduct a systematic 
literature review to answer the following research question: 
'Which is the current state of the art in predicting lead times in 
engineer to order environments and which data and methods 
or algorithms are used?’. Additionally, we ask as second 
research question ‘How does the existing literature contribute 
to future research on the prediction of lead times?’ to identify 
implications for further research. In our study we follow the 
structure of VOM BROCKE ET AL. [24] supplemented by 
dedicated review concepts from other authors like a procedure 
model of MOHER, LIBERATI ET AL. [25] and a clustering 
approach of WEIßER, SAßMANNSHAUSEN ET. AL. [26]. Since 
we assume that the authors use different classes of data and 
methods or algorithms, we will develop a framework for the 
classification of the publications. Based on the classification, 
we will perform a descriptive analysis, which will then be used 
to identify focus topics in the existing literature as well as 
implications for further research. 

Our paper is structured as follows. Section II first introduces 
the terms lead time and prediction. Section III elaborates the 
systematic literature review and details the applied 
methodological approach. In section IV a framework is 

derived as a result of the systemic review and a detailed 
analysis of the current state of the art in the body of literature 
is conducted. Based on this, the implications for further 
research are derived in section V. Finally, a summary is given 
in the last section. 

II. LEAD TIME AND LEAD TIME PREDICTION 
According to the Business Dictionary [27] lead time is defined 
as the ‘number of minutes, hours, or days that must be allowed 
for an operation or process, or must elapse before a desired 
action takes place’. A definition for the term lead time with 
focus on manufacturing processes is given by the Cambridge 
Business English Dictionary [28] and GUNASEKARAN, PATEL 
ET AL. [29] with the time that elapses between receiving a 
customer´s order and the delivery of the goods or service to 
the customer. A more detailed definition for the manufacturing 
lead time is given by the Business Dictionary with the ‘total 
time required to manufacture an item, including order 
preparation time, queue time, setup time, run time, move time, 
inspection time, and put-away time. For make-to-order 
products, it is the time taken from release of an order to 
production and shipment’ [27]. WIENDAHL [30, pp. 41-47]and 
NYHUIS [31, pp. 17-24] divide an order into individual 
operations and differentiate accordingly between order lead 
time and operation lead time: The order lead time elapses 
between the start of the first operation and the end of the last 
operation. Each operation lead time is further divided into the 
interoperation and operation time. The interoperation time 
consists of the three components wait time after processing of 
the previous operation, time for transportation between 
previous and current workstations and another waiting time 
before processing on the current workstation. The operation 
time is divided into the setup time and the actual processing 
time. As it is well known, waiting times have a higher share in 
the lead time than the processing times [30, p. 37][32][33].  

In a production environment the job´s lead times are 
determined by the production schedule considering the 
available production capacity, technical restrictions, due dates 
and the system status [5][34][35]. The job sequence is defined 
according to certain rules to calculate the start and end dates 
of the jobs at the work stations [36]. One of the fundamental 
rules is to determine the job´s waiting time depending on the 
machine´s utilization [37]. Here, performance curves play a 
key role [38]. The performance curves, also called operating 
curve [39] or characteristic curve [40], can be generally 
understood as a tool to model performance indicators of a 
workstation´s productivity considering functional 
relationships between logistic parameters such as lead times, 
throughput and stock [37]. To determine the performance 
curves, several different methods are known, which are 
subdivided mainly into the two areas approximation function 
and queuing theory [37, 38]. Within the area of approximation 
functions the main representative is a description of 
elementary relationships of flow processes based on the so-
called "funnel model" and the flow diagram [30, 31, 41]. The 
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funnel-model focuses on the representation of the 
performance-stock ratio and determines the capacity of a 
workstation as the upper performance limit. Here, the 
performance curve is defined as a so called CNorm-function 
[31]. The area of queuing theory condenses approaches which 
are mainly based on the so-called Kingman equation [42], as 
well as their extensions to multi-operator systems and 
adaptations for practical use (see [38] and [43], and the 
references herein for further details). One exemplary 
extension of the Kingman´s equation is given by the authors 
in [44], who approximated the curve by using a constant factor 
to replace the variability term in the Kingman´s equation. The 
authors in [45], [46], [47] and [48] used this extension to 
quantify the productivity improvement of a semiconductor 
fabrication plant. Furthermore, historical data can be used in 
the determination of performance curves. WU AND MCGINNIS 
[49] for example used historical lead times in the 
determination of the performance curves and based on that 
calculated queueing times and subsequently lead times. 

After determining the production schedule, of course, 
disruptions can occur that lead to a deviation from the 
schedule. In this case a rescheduling is performed to update 
the scheduled according to the new situation [35]. There are 
also approaches that consider potential disruptions during 
scheduling to get a more robust schedule [35]. LEON, WU ET 
AL. [50] for example analyze the effect of single disruptions 
for delaying a job and use a genetic algorithm that minimizes 
expected delays and lead times to find a robust schedule. 
TADAYONIRAD, SEIDGAR ET AL. [51] take unplanned machine 
breakdowns into account. Summarized in both scheduling and 
rescheduling the expected lead time is calculated based on the 
determined job sequence and available capacities.  

Besides calculating the lead time based on a previous 
sequencing the lead time can also be predicted direclty. In the 
past, a large number of approaches have been established for 
predicting lead times. CHENG AND GUPTA [20] performed an 
early literature review and investigated relationships between 
due dates, dispatching rules and lead times in static and 
dynamic job shops. Their focus was on a particular segment of 
scheduling research in which the due date assignment is of 
primary interest. They reviewed methods for calculating a 
job´s due date based on a given job starting time and a 
predicted flow allowance, which is equal to a lead time. They 
differentiated between exogenous and endogenous methods 
[20]. In exogeneous methods, a job´s lead time is set as a fixed 
and given attribute of a job before entering the production 
system. Examples are Constant (CON), where all jobs are 
given exactly the same lead time, and Random (RAN), where 
the lead time for a job is randomly assigned. In endogenous 
methods the job´s lead time is predicted as the job is entering 
the production system considering job characteristics and shop 
status information. Examples for considering job 
characteristics are Total Work (TWK), where the lead time is 
predicted based on a jobs processing time and Number of 
Operations (NOP), where lead times are predicted based on 

the number of operations to be performed on the job. 
Examples for considering shop information are Jobs in Queue 
(JIQ), where the lead times are predicted based on the number 
auf jobs in a queue of the production system or Work in Queue 
(WIQ), which is similar to JIQ but utilizes the processing 
times instead of the number of jobs. Comparing the predicted 
lead times of exogenous and endogenous methods, the 
endogenous methods are generally superior [52]. Combining 
job and shop status has proven to be more effective [53][54]. 
Further details on the methods and its performance are given 
by [53][55][56]. All approaches reviewed by CHENG AND 
GUPTA have in common that they use analytical techniques for 
the prediction of lead times that are typically found in in the 
field of OR. One of the most fundamental analytical 
approaches is Little´s Law, which determines the average 
number of items in a queue of a stationary system based on the 
average arrival rate of items to that system and the average 
waiting time [57]. With the increasing development of ML, 
new data analytics methods for directly predicting lead times 
have emerged. In their study, BURGGRÄF, WAGNER ET AL. [58] 
have highlighted that scheduling and the prediction of lead 
times was traditionally one of the key research topics for ML 
in production. ÖZTÜRK, KAYALIGIL ET AL. [21] for example 
used a regression tree to predict lead times considering several 
attributes from shop status and job characteristics which 
outperforms the traditional TWK, ALENEZI, MOSES ET AL. 
[59] utilize a support vector machine and WANG AND JIANG 
[60] develop a deep neural network.  

Concluding, there are two possible approaches to determine 
lead times: Firstly, indirect based on scheduling and 
approximating waiting times considering performance curves 
and secondly, by performing a direct prediction of lead times 
based on specific rules or historical data. To the best of our 
knowledge, no review article analyses the current status of 
available approaches for the direct prediction of lead times 
coming from both areas ML and OR. In the recent works the 
relevant state of the art is summarized. However, no 
systematic procedure is apparent.  

III. CONDUCTING THE REVIEW 
A systematic review is a type of literature review based on 
systematic methods to reproducibly answer a specific research 
question by identifying all relevant studies and synthesizing 
findings qualitatively or quantitatively [61][62]. It is designed 
to provide a complete, exhaustive, transparent and replicable 
summary of current stare of the art [63]. 

The methodology used in this review is following the 
procedure model of VOM BROCKE ET AL. which consists of 
five steps: (I) definition of review scope, (II) conceptualization 
of topic, (III) literature search, (IV) literature analysis and 
synthesis as well as (V) deduction of research agenda [24]. It 
is widely accepted within review theory [64] and not least it 
grants freedom of action for domain and process specific 
examinations.  
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A. DEFINITON OF REVIEW SCOPE 
The review scope was characterized according to the 
taxonomy of literature reviews by COOPER [65] (cf. Fig.1). 
The research focus is on research outcomes and applications 
with the goal of knowledge integration using a conceptual 
structure. From a neutral perspective the review addresses 
specialized scholars considering all the relevant sources, but 
describing only a sample. So, the coverage is classified as 
exhaustive and selective.  

 
FIGURE 1. Taxonomy of literature reviews following COOPER [65] 

 
The organization of prior research identifies a relationship 

between the considered data, algorithms and predicted lead 
times and serves to highlight the high multitude of possibilities 
to predict lead times (cf. Section II). The aim of this systematic 
literature review is consequently first to aggregate the latest 
state of the art for the prediction of lead times including used 
data and algorithms and second to develop an integrative 
framework for the further analysis and synthesis of the 
relevant publication. Here, we want to focus on the direct 
prediction of lead times only and leave out approaches 
focusing on scheduling, queueing theory or performance 
curves since these approaches rely on the determination of 
waiting or interoperation times and do not fully consider 
potential disruptions occurring during production process 
itself leading to an extension of the processing time. A direct 
prediction of lead times can include these disruptions as it 
considers always the complete lead time consisting of waiting 
and processing time instead of only a part of it. Furthermore, 
a direct prediction of lead times based on historical data is 
gaining new potentials with the enormous improvements in 
data acquisition combined with the upcoming research area of 
ML providing new data analytics methods. Accordingly, this 
leads to the following research questions: 

• RQ1: Which is the current state of the art in directly 
predicting lead times for manufacturing companies 
and which data and methods or algorithms are used? 

• RQ2: How does the existing literature contribute to 
future research on direct lead time prediction? 

 

B. CONCEPTUALIZATION OF THE TOPIC 
Before conducting a review to synthesize knowledge from 
literature, according to the authors in [66] it is strongly 
recommended to acquire a priori knowledge about the topic, 
to identify potential areas where synthetized knowledge may 
be needed and to properly conduct the review. Based on the 
explanations and definitions provided in Section I and II and 
reviewing over 40 publications with an explorative approach 
we identified concepts most relevant to our field of 
observation and mapped them to the topic. So, it is ensured to 
use a wide range of key terms that are locatable within 
literature. As a result, we generated a concept map [67] for 
lead time prediction (cf. Fig. 2). The concept map lists all 
relevant synonyms for the further literature search. 

 
FIGURE 2 Conceptualization map for lead time prediction according to 
the procedure of ROWLEY AND SLACK [67] 

C. LITERATURE SEARCH 
Based on the concept map the search terms were transferred 
into the following search string including Boolean operators 
and wildcards: (“predict*” OR “forecast*” OR “estimat*” OR 
“anticipat*”) AND (“throughput time*" OR "flow time*" OR 
"remaining time*" OR "finish time*“ OR “makespan*”). We 
used AND operators to exclude publications focusing on a 
single area of the search field only in order to increase the 
thematic relevance. The search strategy was enhanced by the 
elements of the STARLITE mnemonic framework [68]: We 
focus on journal articles and conference proceedings 
published in English between 1960 and 2019 in the electronic 
databases IEEE Xplore, Web of Science, EBSCO, 
ScienceDirect, and SpringerLink. 

The application of the search string to the metadata title, 
abstract and key words, considering the additional criteria 
from the STARLITE mnemonic, identified a total of 18,697 
publications in all databases. Afterwards, we followed the 
procedure given in the PRISMA flow diagram according to 
MOHER ET AL. [25] to consider relevant publications only. The 
procedure recommends to remove duplicates followed by a 
literature screening and detailed assessment of relevance 
based on the full text. The following quality criteria were 
defined for the screening and the detailed assessment: 

• QC1: Addresses the domain of manufacturing. 

Characteristic Categories

1 Focus Research 
outcomes

Research 
methods Theories Applications

2 Goal Integration Criticism Central issue

3 Organization Historical Conceptual Methodological

4 Perspective Neutral representation Espousal of position

5 Audience Specialized 
scholars

General 
scholars

Practitioners / 
politicians General public

6 Coverage Exhaustive Exhaustive and 
selective Representative Central / pivotal

Estimation Prediction

Forecast

Anticipation

Finish timeLead time

Flow time

Throughput 
time

Remaining 
time

Makespan
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• QC2: Publications are focusing on the prediction, 
estimation or forecast of lead times or parts of lead 
times. 

• QC3: Publications focusing on algorithm 
development rather than methodological / domain 
specific applications are excluded. 

• QC4: Publications focusing on job shop sequencing, 
queueing theory or performance curves rather than 
on a direct prediction of lead times are excluded.  

The total number of publications included 3,786 duplicates. 
In the remaining 14,911 publications we identified various 
publications that do not comply with the applied search 
criteria. It turned out that some databases apply the search 
string to the full text in addition to title, abstract and key words. 
To comply with the search criteria, we additionally applied the 
search string to title, abstract and key words manually. After 
removing duplicates and the manual application of the search 
string a total number of 4,004 publications remain for the 
screening phase. 

For screening the publications, we utilized a clustering 
approach by WEIßER AND SAßMANNSHAUSEN ET AL. [26] 
based on Natural Language Processing (NLP). Starting with a 
tokenization (word separation), the removal of stop words 
(stop words do not contain relevant information) and a TFIDF 
vectorization, a k-Means clustering is performed and the most 
relevant words (topwords) per cluster are identified. The 
topwords characterize each cluster and indicate its thematical 
relevance. We used title, abstract and key words without the 
search string as base for the clustering. Due to the resulting big 
text corpus we performed a dimensionality reduction by latent 
semantic analysis (LSA), as proposed by [69] and [70], to 
achieve better clustering results. Furthermore, to fully comply 
with the defined quality criteria, we did not solely rely on the 
topwords for excluding irrelevant clusters as proposed by 
WEIßER AND SAßMANNSHAUSEN ET AL. [26]. Based on the 
assumption of homogenous clusters, we have additionally 
taken a representative but random sample of publications of 
each cluster and read their full texts. Only if all of the 
publications in the sample do not match the quality criteria 
QC1-4, the whole cluster is assessed as irrelevant.  

For the 4,004 remaining publications a clustering with ten 
clusters was performed and the topwords were extracted (cf. 
Table 1). The number of clusters was identified by applying 
the elbow method. Based on the analyzed samples and the 
topwords the clusters three, five and nine are assessed as 
relevant with a total number of 857 publications. Following 
the clustering, we analyzed the abstracts of all publications 
with respect to QC1-4. The remaining 367 publications were 
then further analyzed by reading the full text resulting in 39 
relevant publications. With the relevant 39 publications we 
performed a forward and backward search, to identify models, 
theories and constructs that may not have been covered by the 
database search terms [71]. Thus, additional three relevant 
publications were identified, leading to the final data set of 42 

publications for further analysis and synthesis in phase IV of 
the approach of VOM BROCKE ET AL. [24]. 

 
TABLE I 

 CLUSTERS WITH TOPWORDS, CLUSTER SIZE AND ASSESSED RELEVANCE 
Cluster 

No. Top Words Cluster 
Size Relevance 

1 Model, data, based, system, 
using 

1,349 Not relevant 

2 Model, series, river, neural, 
network 

463 Not relevant 

3 Manufacturing, production, 
process, product, system 

376 Relevant 

4 Ensemble, precipitation, skill, 
model, weather 

448 Not relevant 

5 Abstract, copyright, may, users, 
abridged 

193 Relevant 

6 Flood, rainfall, model, river, 
warning 

180 Not relevant 

7 Traffic, series, network, model, 
term 

68 Not relevant 

8 Skill, enso, ocean, climate, sst 457 Not relevant 
9 Inventory, demand, supply, 

chain, bullwhip 
288 Relevant 

10 Cancer, screening, patient, 
breast, survival 

182 Not relevant 

IV. RESULTS 
The intention of this theoretical overview is to bring relevant 
concepts into a superordinate structure, to map the 
contribution of literature to our problem statements, and to 
provide starting points for future research [64]. Therefore, 
publications with different concepts are analyzed and 
synthesized considering how they contribute to our research 
questions (cf. section III A). Before performing the analysis 
and synthesis in section IV B we define a framework as a base 
in section IVA. 

A. DEFINITION OF THE FRAMEWORK 
Setting up a framework is a common approach to structure 
literature as recommended by [72] and [73]. Our framework is 
separated in the following three dimensions (cf. Fig. 3): 
1) DATA CLASS 
As a core differentiation we already mentioned the data class 
(cf. Section I and II). CRONJÄGER [74] divides the recorded 
data of manufacturing companies into order data, machine 
data, employee data and material data. Order data define all 
specific dates, times and quantities of individual orders. In our 
framework we will further include operation specific dates, 
times and quantities in the order data since an operation is part 
of an order. Machine data define all characteristics of the 
machines that are used to process orders such as the machine 
ID, information about the tools or fault messages. Employee 
data contain information about the operators of the machines. 
This information is for example, the presence of employees or 
specific data such as the age or performance of an employee. 
Material data define all product characteristics of the product 
to be manufactured such as geometric specification, weights 
or the material itself. In addition, we identified publications 
that utilize information about the system status to directly 
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predict lead times such as the stock level in intermediate 
storage or the capacity utilization of the machines (compare 
[18][75][76]). We have therefore added the system status as a 
fifth data class. 
2) DATA ORIGIN 
The analysis of the relevant publications showed that data used 
to directly predict lead times have various origins such as a 
planning data, a simulation or feedback data from a real 
production. For example, GOVIND AND ROEDER [77] generate 
input data for a direct prediction of lead times from a 
simulation. GRABENSTETTER AND USHER [78] consider 
historical data from a real production environment to directly 
predict lead times. Based on that we divided the second 
dimension of the framework data origin into the categories 
feedback data and master data. Feedback data describes data 
that was recorded in a real production environment during the 
production process. Master data are data used for planning 
without real feedback from a production environment. We 
included data that was generated from a simulation or whose 
origin is not further described within a publication in the 
category master data. 

 
FIGURE 3. Dimensions of developed framework 

 

3) METHOD / ALGORITHM 
Lead times can be predicted directly based on methods or 
algorithms from both research areas OR and ML (cf. section 
II). Since OR and ML are already established since many 
years, several overviews of these methods and algorithms are 
available in literature. For our framework we consider the 
basic works by ZIMMERMANN AND STACHE [79] and 
FEICHTINGER UND HARTL [80] to subdivide OR. They 
differentiate between Precedence Diagram Method (PDM), 
Linear Programming (LP), Nonlinear Programming (NLP), 
Combinatorial Optimization (CO), Control Theory (CT), 
Queuing Theory (QT), Decision Theory (DecT) and 

Heuristics (H). To subdivide ML we utilize the often-cited 
overview about supervised learning algorithms by CARUANA 
AND NICULESCU-MIZIL [81] to subdivide ML. They 
differentiate between Artificial Neural Networks (ANN), 
Logistic Regression (LOGREG), K-Nearest-Neighbor 
(KNN), Support Vector Machines (SVM), Random Forest 
(RF), Decision Trees (DT) and Bagged Trees (BAG-DT). In 
addition to that we extended the field of Logistic Regression 
by Linear Regression (LINREG).  

B. ANALYSIS AND SYNTHESIS 
Based on these defined dimensions we classified all 
publications accordingly and performed a descriptive analysis 
to identify the current state of the art in directly predicting lead 
times in manufacturing companies and in the used data classes 
and methods or algorithms (cf. RQ1). Additionally, we further 
deducted how the literature contributes to further research (cf. 
RQ2). A good overview of the development of a research area 
is given by the chronological development of the publications 
(cf. Fig. 4). Given the 42 identified publications, Fig. 4 shows 
an increasing number of publications focusing the direct 
prediction of lead times over time. Before the year 2000, we 
identified only three publications focusing the direct 
prediction of lead times, while the remaining 39 publications 
appeared after that date. Thus, a trend can be seen towards an 
increasing interest in the research area of directly predicting 
lead times.  

 
FIGURE 4. Chronological development of publications  

 
Next, we analyzed the dimensions of the framework (cf. 

Fig. 3) individually and subsequently combined two or more 
dimensions to identify common approaches and implications 
for further research. The following paragraphs are structured 
according to the considered dimensions.  
1) DATA CLASS 
Looking at the data classes, it was noticeable that with a share 
of 95% of all publications, almost every author takes order 
data into account to directly predict lead times (cf . Fig. 5). JIA, 
ZHANG ET AL. [82], BERLEC AND GOVEKAR [83] or GRAMDI 
[84] for example use order data such as start and end dates of 
orders or order-specific processing times for the prediction of 
lead times. Therefore, order data are relevant for the direct 
prediction of lead times. Furthermore, the system status with a 
share of 62 % of all publications is often used for direct 
predicting lead times. In contrast, machine and material data 
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with a share of 21 % and 5 % respectively are used relatively 
rarely and employee data with a share of 0 % have not been 
used for directly predicting lead times at all. One possible 
explanation for not using employee data could be, that due to 
data privacy restrictions employee data is not available for 
analysis. Furthermore, material data is commonly stored in the 
CAD-system, drawings or in the material master data in the 
ERP system, which might not be directly linked to the order 
data or system status. GYULAI, PFEIFFER ET AL. [85] and 
KARAGOLAN AND KARADEMIR [23] are the only authors who 
use material data such as dimensions or specifications of the 
product for directly predicting lead times. Machine data are 
used by WENG AND FUJIMURA [86], for example, in the form 
of the machine ID. LINGITZ, GALLINA ET AL. [22] use so-called 
‘equipment data’ containing information about machines and 
tools to predict lead times without describing these data in 
more detail. The small proportion of machine, material and 
employee data suggests that either there is no or only a small 
relation between lead times and these data classes, or the 
connection has a low research interest in previous research. 
Since products in an engineer to order environment are 
designed individually and therefore the materials differ greatly 
in their characteristics, we see a high potential for further 
research considering material data as an input for directly 
predicting lead times.  

 
FIGURE 5. Overview of used data classes 

 
Analyzing the number of used data classes in more detail 

reveals that 86 % of all publications use two or less different 
data classes for directly predicting lead times (cf. Fig. 6). In 
case of using one data class only the majority of publications 
are considering order data like [87] or rarely system data like 
[75]. Machine and material data are not used solely. In case of 
using two or more data classes, order data is always included. 
With 40 % the majority combines order data and the system 
status like [21]. Only a minority of 14% of all publications is 
using three data classes for directly predicting lead times 
combining order and system status with either machine data 
like [88] or with material data like [85]. Furthermore, it can be 
seen that in none of the publications more than three data 
classes are used. Since different combinations of three data 
classes have already been successfully demonstrated, namely 
order data + system status + machine data and order data + 
system status + material data, it is also conceivable that a 
combination of all four data classes order data, system status, 

material data and machine data can provide good results in 
directly predicting lead times. Therefore, we see a high 
potential for further research in using three and more data 
classes for the direct prediction of lead times. Future 
researchers could, for example, develop a model using ML or 
OR in which, in addition to the system status and order data, 
they also use the material data to directly predict lead times. 

 

FIGURE 6. Overview of quantity of used data classes 

2) METHOD / ALGORITHM 
Over time, the number of publications with ML increases 
continuously, whereas the number of publications with OR 
remains almost constant. In the case of ML 18 of the 23 
publications were published after 2010. Therefore, the 
emerging trend of ML can also be seen in the research field of 
directly predicting lead times. In total the comparison of the 
research areas ML and OR shows with 55% only a slight 
majority in the area of ML compared to OR with 45 % (cf. Fig. 
7a). Looking at the ML methods and algorithms used in detail 
reveals that ANN (43% of all ML-publications), 
LINREG/LOGREG (30 %), DT (26 %) and RF (22 %) were 
primarily used (cf. Fig. 7b). Furthermore, we identified 
authors using more than one approach within a publication to 
directly predict lead times. For example, ASADZADEH, 
AZADEH ET AL. [19] combine two approaches (ANN and 
LINREG) in one model, the authors in [89][90] compare two 
approaches (ANN and DT) and the authors in [91] use a linear 
regressor (LINREG) to predict lead times. SCHUH, PROTE ET 
AL. [33] present a three-step procedure with a DT regressor for 
predicting order-specific interoperation times. GYULAI, 
PFEIFFER ET AL. [85] compare OR (e.g. Little's Law) and ML 
approaches and conclude that ML provides more precise 
results than OR. In their proposed model, a random forest 
approach is finally chosen because of a higher model accuracy 
for the available input data. Furthermore, a digital twin of the 
production environment is created to provide the ML model 
with quasi real production data for predicting lead times. 
Looking on the used OR methods and algorithms in detail 
reveals that Combinatorial Optimization (26 % of all OR 
publications), Heuristics and Queuing Theory (both 21 %) 
were primarily used (cf. Fig. 7c). For example, BERLEC AND 
STARBEK [17] use Combinatorial Optimization by setting up 
the lead times per operation of different orders in one vector 
per workstation and then randomly select and combine 
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individual elements of the vectors to determine the total lead 
time of the order following a given processing sequence. In 
conclusion, in both research areas ML and OR specific 
methods and algorithms are used more frequently for directly 
predicting lead times while others like SVM or Control Theory 
are used rarely. 

 
FIGURE 7. Overview of methods and algorithms used in ML and OR 

3) DATA CLASS AND METHOD / ALGORITHM 
Combining the data class with the used method and algorithms 
reveals that order data is used in combination with all methods 
and algorithms (cf. Fig. 8). This deducts a general relevance 
of order data for directly predicting lead times, regardless of 
the method or algorithm used. The system status is used in 12 
of 13 methods and algorithms for directly predicting lead 
times and can therefore be classified as generally relevant as 
well. Only decision trees are not used in combination with the 
system status. Looking at the method of decision tree, we do 
not see any methodological reason for not using decision trees 
in combination with the system status. Considering machine 
data, it is noticeable that in more than 50 % of cases 
combinatorial optimization (e.g. [92]) and ANN (e.g. [89]) are 
used. One possible explanation for this could be, that the 
information about several machines within the machine data 
need to be combined according to the corresponding 
processing sequence which is a typical application for 
combinatorial optimization and ANN. When using product 
data, it is noticeable again that only ANN in [23] and Random 
Forest in [85] are used to predict lead times. This either 
indicates that material data are not analyzable with other 
methods and algorithms, material data do not correlate with 
the directly predicted lead times or that material data has 
received less attention in prior research. Since there are 
already approaches with good results using material data for 
directly predicting lead times, we consider the second option, 
that material data do not correlate with lead times, as 
negligible. 

 
FIGURE 8. Overview of data classes combined with used methods and 
algorithms 

 
FIGURE 9. Overview of data origin combined with used methods and 
algorithms 

4) DATA ORIGIN AND METHOD / ALGORITHM 
Looking at the data origin only, we recognized an equal 
distribution of publications between feedback data and master 
data (cf. Fig. 9). Combining the used methods and algorithms 
with the data origin enables a more detailed view: Publications 
considering feedback data as base for directly predicting lead 
times utilize ML approaches with a share of 63% more 
frequently than OR. Here, most authors use ANN or 
LINREG/LOGREG. On the other side, OR approaches based 
on feedback data are dominated by CO. This leads to the 
insight that, from the field of ML, ANN and 
LINREG/LOGREG and, from the field of OR, CO are solid 
approaches for directly predicting lead times based on 
feedback data. KARAGOLAN AND KARADEMIR [23] for 
example perform a prediction of lead times using ANN and 
reach an accuracy up to 98.54 % comparing the predicted lead 
times with the real lead times. In publications considering 
master data instead of feedback data with a share of 55 % OR 
is used more frequently than ML. In detail ANN, RF, and QT 
are utilized almost equally. In conclusion, ML dominates the 
direct prediction of lead times based on feedback data whereas 
OR dominates the direct prediction of lead times based on 
master data. One possible explanation for this could be, that 
feedback data contain a larger amount of data sets which are 
predestined for ML, whereas the creation of master data is a 
manual and thus, expensive process which is suitable for OR. 
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5) DATA CLASS AND DATA ORIGIN 
Analyzing the combination of data class and data origin 
reveals a trend in the considered data origin depending on the 
used number of data classes (cf. Fig. 10). If only one data class 
is used for the direct prediction of lead times, almost 70 % of 
the corresponding publications consider feedback data. If 
three data groups are used, the proportion of publications 
considering feedback data reduces to only 33 %. This shows 
that the proportion of publications using feedback data 
decreases as the number of considered data groups increases. 
Since the number of data classes is an indicator for the model 
complexity, the identified trend implicates a decreasing use of 
feedback data for a direct prediction of the lead times with an 
increasing model complexity. Therefore, we see a high 
potential for further research focusing on higher model 
complexity with a larger number of data classes combined 
with feedback data. 

 
FIGURE 10. Overview of data origin combined with the quantity of used 
data classes 

 
The performed analysis and synthesis of the existing 

publications differentiated by the dimensions of our 
framework provided an extensive and detailed answer on 
RQ1. We identified data classes, data origins as well as 
methods and algorithms that are mainly used in the body of 
literature. We also identified implications for further research 
which we will summarize in the following section in detail. 

V. IMPLICATIONS FOR FURTHER RESEARCH 
As already stated, all of the publications found in literature 
focusing the direct prediction of lead times could be classified 
with our developed framework (cf. section IV). By performing 
a descriptive analysis, we were able to identify common 
approaches that were used by the majority of researchers. 
Furthermore, we identified white spots and noticeable trends 
that indicate the need for further research (RQ2). Looking at 
the considered data classes we identified material data as an 
almost complete white spot in the research area of directly 
predicting lead times. Only few researchers present results in 
directly predicting lead times considering material data. With 
our review focus on the engineer to order production, where 
products often consist of a large number of components that 
are designed individually to achieve a tailor-made solution for 
the respective customer [7][8], we see a high potential for 

further research considering material data in the direct 
prediction of lead times. Furthermore, we identified only few 
publications considering three or more data classes. Since 
disruptions in production systems are widely spread over 
various root causes [13], each of the different data classes 
might contain relevant information that correlate with the lead 
time. Additionally, we identified a decreasing number of 
publications using feedback data, if the number of used data 
classes increases. Feedback data contain the real information 
about the production system. Consequently, we see a high 
potential for further research considering three or more data 
classes for directly predicting lead times based on feedback 
data from a real production environment. Those few 
researchers focusing material data as input for directly 
predicting lead times only used ANN and RF so far. Thus, 
analyzing the performance of other methods and algorithms 
for directly predicting lead times based on material data is 
another research potential.  

VI. CONCLUSION 
In this article an SLR was conducted to determine the state of 
the art of directly predicting lead times with focus on engineer 
to order production. The lead time is one of the key factors for 
meeting customer requirements and predicting lead times can 
help to identify potential deviations from agreed delivery dates 
at an early production stage. Based on the identified 
deviations, the responsible person for production can then set 
counter measures to meet the due dates. The aim of this study 
was therefore to identify relevant data classes as well as 
methods and algorithms from the field of OR and ML used for 
directly predicting lead times within the body of literature. We 
conducted our research according to the SLR procedure model 
according to VOM BROCKE ET AL. [24] and integrated 
dedicated SLR concepts from other authors. Within the phase 
of literature search we identified a total of 18,697 publications, 
of which 42 publications were further considered in the core 
of our analysis. For the purpose of the selection of publications 
we utilized a clustering approach by WEIßER, 
SAßMANNSHAUSEN ET AL. [26] to allow a more efficient and 
target oriented scanning and filtering. In the subsequent 
analysis phase a framework was developed to structure the 
considered publications followed by a descriptive analysis as 
the base to identify common approaches within the body of 
literature and to derive implications for further research. 

A direct lead time prediction based on ML is a research field 
with increasing relevance. Concerning the considered data 
classes for the direct prediction, two data classes, namely order 
data and system status, are mainly used. Noticeable was the 
low usage of material data and feedback data in more complex 
models. From the field of ML, ANN and Regression models 
show high potential for further research in complex models 
considering material data and feedback data. With the 
performed detailed analysis all research questions stated in 
Section III A were eventually answered. 
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We believe this study has both theoretical and practical 
implications. It provides academics with an overview of the 
state of the art of approaches for the direct prediction of lead 
times and indicates potential for further research.  
Furthermore, it can offer practical guidance to practitioners in 
selecting data classes as well as methods and algorithms to 
implement an approach for directly predicting lead times in 
their production environment. 
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